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"NEAR-MATCHES" FOR ORDERED ALTER 
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SUMMARY. A rank test based on the number of "near-matches" among within-block 

rankings is proposed for ordered alternatives in a randomized block design with n treatments and 

m blocks. The Pitman asymptotic relative efficiency of this test with respect to the W-test based 

on within-block rankings is studied for uniform (or Wilcoxon) scores when m is fixed and the 

number of treatments n, is allowed to go to infinity. The relative performance of the proposed 

test and the TP-test is studied for a number of situations involving the normal as well as some 

other heavy-tailed distributions. Monte Carlo studies have also been made for moderate values 

of n and m. Tables of critical values are provided for the proposed test for comparison of up to 

n = 9 treatments. 

1. Introduction 

Suppose {Xij,j 
= 1, ...,n ; i = 1, ...,m} represent the data in a complete 

Randomized Block Design experiment with n treatments and ra blocks. 

Assume that the observation Xij on the j-th treatment in the i-th block has 

the unknown cumulative distribution function Fy. We restrict attention 

to ordered location shifts of the form F{j(t) 
= 

F(t?dj?bi) where {dj} are 

the treatment effects and {bi} 
are the (nuisance) block effects. We wish to test 

H0:d} = 0 Vj ... (1.1) 

versus the ordered alternative 

F1:d1<di<...<dn, 
... (1.2) 

where at least one of the inequalities in (1.2) is strict. We may rewrite this 

model as Xy 
= 

Yy+dj+bi, j 
= 1, ..., n ; i = 1, ..., m where {Yy} 

are 
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independent identically distributed (i.i.d.) random variables (r.v.'s) having 

the common distribution function F with density /. Most of the parametric 
as well as nonparametric tests for the ordered alternatives in (1.2) have been 

proposed rather on an adhoc basis and they retain their (asymptotic or local) 

optimality properties only for nearly equal spacings of the d/si.e., the so 

called regression alternatives. They may behave quite poorly for significant 
unevenness of these spacings. The tests based on isotonic maximum likelihood 

estimators have the property of being the most stringent and somewhere 

most powerful tests (see, for example, Schaafsma, 1968). However, these 

have only been worked out for the normal distributional models. In the 

nonparametric case the union-intersection (u.i.) principle has been used to 

construct such locally most powerful (L.M.P.) tests for ordered alternatives 

(see, for example, Chatterjee, 1984). These u.i. L.M.P. test statistics have 

rather complicated distributions in the null and specially in the alternative 

cases. The proposed test combines the simplicity of the null as well as 

asymptotic distribution theory while retaining the near optimality in a broader 

class of alternatives. 

Let Rtj denote the rank of Xy among {Xfv ...,Xfn}. Under II0,Rt 
~ 

(RiV ..., Rin) takes on all possible (n !) permutations of n = 
(1, ..., n), 

whereas under H?, Rt is stochastically in the natural order. Therefore, it 

is natural to compare the concordance of the rankings within the i-th block, 

with the natural order. A test of this type, called the TT-test, proposed 

and studied by Page (1963) is given by 

*=JU('--"4-1)(*-"41)- 
- <"> 

The test rejects H0 for large values of Pirie (1974) derived the asymptotic 

relative efficiency (ARE) of this test with respect to Hollander's (1966) for 

fixed m and n?>oo. Also, Pirie and Hollander (1972) and Pirie (1985) consi 

dered the normal-scores version of this test. Observe that (1.3) can be 
m 

expressed equivalently as ? 2 \\Rt?n\\2, where ||.|| stands for the Euclidean 

norm. Incorporating the notion of nearest neighbor norm, i.e., pjt(\\a?b\\) 
= 

{^i : \aJ?bj\ < k} we propose an alternative test, designated as the 

ilf-test, based on the statistic given by 

m n 

if- 2 2 IdRij-Jl <kj>n) 
i=l j=l 

= S ll(bn,< (^) <o*) 
... (1.4) 
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with 

anj 
= n-1 min(n,j+kj,n) bnj 

= n~x max(0, j-kji7l) 
... (1.5) 

and where 1(A) is the usual indicator function of the event A. Note that 

a perfect match relates to the case of k = 0 while for k > 1 (but small compared 
to n) we have "near matches". For the particular case of m = 1 and k^n 

independent of j we may refer to Jammalamadaka and Janson (1984). The 

asymptotic distribution of the M statistic under a converging sequence of 

alternatives given in (2.2), is derived in Section 2 while the ARE of the 

Jf-test with respect to the TF-test is considered in Section 3. In Section 4, 

Monte Carlo power computations for the M and W tests, for n 

= 8 and m = 2 are given. Also, the tables of critical values of ilf-test 

statistic, for values of n = 
3(1)9, m = 

1(1)4 for nominal values of a = .10 .05 

and .01 are given. 

In passing, we may mention that for moderate values of n, Pearsonian 

distributional approximations can be adopted through computed values of 

skewness and kurtosis coefficients under the null hypothesis. 

2. The asymptotic distribution of the m statistic 

For ARE computations, consider a Pitman-sequence {Hin} of local alter 

natives, where, subject to (1.2), 

Hin : Xij 
= 

Yij+dnj+bi,j 
= 1, ..., n ; i = 1, ..., m ; ... (2.1) 

with 

max{|dni| :l < j < n} 
= 0(n~^). ... (2.2) 

It is clear that statistics based on within-block rankings (as our if-test), 
eliminate the (nuisance) block effects. Note that the sequence of alternatives 

in (2.2) could also have been defined with dnj 
= 

cpn. dj where <pn 
= n~1/2 <p. 

We emphasize again that the dw/s in (2.1) need not be equally 

spaced. 

Let F(y) be the true d.f. of Yn so that under Hln, the d.f. of Xy in 
n 

F(y?dnj),j 
= 1, ...,n. Let Fnt(y) 

= n*1 S I(Xij < y) be the empirical 
i=i 

d.f. of XiV ..., Xtn. Then, the M statistic in (1.4) can be expressed as 
m n _ n 

2 S/(|rf8i(i(i)-i|<y. Also, let ,F(B)(y) = n-* S F(y-dnj) be the 
t?1j?l j=l 

average d.f.. Suppose we have the 
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Assumption (A) : F has a bounded (a.e.) second derivative /'( 
= 

F"). 

Then, by a Taylor expansion and (2.2), we have, for 0 < d < I, 

F(n)(y) = "-1 S F(y-dnj) 
= n-i 2 

{JP(^)_d^/(2/) + ~ 
?^'(y-ftkj)} 

= 
J(y) + (2?)-i 2 dtf'ly-Mn,). 

Hence, 

sup IFay)~m I < (2*)-1 {sup|/'(j,) |} 
= 0(n-i). ... (2.3) 

y y 

Note that in this case of independent but non-identically distributed r.v.'s, 
the tightness part of the weak convergence of the empirical process ensures 

the following (for each i) : 

nV*\\F*-F\\ = sup {nV*\FM(y)-F(y)\} 
= 0v(l) ... (2.4) 

y 

and, for every e > 0, there exists a positive 8, such that (cf. Shorack and 

Wellner, 1986, p. 109, Theorem 1) 

mV{n^\Fin)(y)-F(y)-Fni(x)+F(x)\ : \y-x\ <S,x,yeR}<e. ... (2.5) 

Let kj)ti appearing in (1.4) be defined by n_1 kj}H 
= 

kn ( -j? j, j 
= 1, ..., n, 

such that (i) kJu) is constant on the interval! ~-f>?tt L 7 = 1> ..., ft+1? and 

(ii) for each ue(0, 1), kn(u) converges as ri?>co, to k(u), which we assume to 

be continuous except for finitely many u, bounded below by zero and bounded 

above by an integrable function. These assumptions imply that 0 < ?2k(u) 

[1?2k(u)]du < oo. Then we have the following 

Theorem 2.1. Under {Hin} in (2.1), (2.2) and Assumption (A), 

? d n 

[M?m(/?J?+AJ]/\/mn cr-> N(0, 1) as n-> oo, where /?J; 
= 2 (anj?bnj), 

An 
= - 2 dnj[f(F-\anj))-f(F-\bnj))l ... (2.6) 

and cr2 = 
f 2^)[l-2?(^)]dw. ... (2.7) o 
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Proof. Note that 

tu m r n \ 

M= S Zn,= S 2 Zw? , ... (2.8) 

w 
where ??n< = S 7(6^ < Fni(Xij) < aw-)> so that for each j, 

?*=i 

??# = 
/[&nj < Fn(Xij) < e%y] 

= 
I[bnj-{Fn(Xij)-F(Xij)} < jF(X<,) < ̂ -{^(Zy)-!1^)}] 

= 
I[F-i(bnj-{Fni(Xij)-F(Xij)})-dnj < r? 

< F-\anj-{Fnti(Xij)-F(Xij)})-dnj]. ... (2.9) 

Writing 

ZJfo 
= 

I[F-i(bnj)-dnj < 7^ < F-i(anj)-dnj],j 
= 1, ..., n ; ... (2.10) 

and 
Z<U=\z\ 

... (2.11) 

we have from the above that 

Zni-ZQni 
= S [Z^-Z^l 

... (2.12) 
;=i 

By using (2.3) and (2.4) and the definitions of Znfj and Z^ [see (2.9) and 

(2.10)], we conclude that the interval (in y) over which Znij and Z^i5 have 

the same value differ by a random shift of the order of Ov(n~112). Using (2.5) 
and the fact (cf. Shorack and Wellner, 1986, p. 109, Theorem 1) that 

^/n(Fnsi(x}?F(x)) has asymptotically a normal distribution with zero mean 

and a finite variance (^ 1/4), we can conclude by some standard analysis that 

P{Znij-Z?nij 
= 

+1} 
= 

o(n-v*) 
- 

P{Znij-Z?nij 
= 

-1}, and P{Znij-Z?nij 
- 

0} 
= 

l~o(n~112). These yield that E\Znij?Zli5 \ 
= 

o(n~1/2), V j which, in view 

of (2.12), implies that n~1/2 E\ Zni-Z^\ 
= 

o(l), and hence n~m (Zni-Z?ni) 

-> 0 as ?i?>oo. On the other hand, using Taylor expansions, one can see 

that the Z^/s are independent r.v.'s with 

EZ% 
= 

(anj-bnj)-dnj[f(F-\anj))-j(F^ 
... (2.13) 

var(Z^) 
= 

(anj-bnj) [l-(anj-bnj)]+0(n-^2). 
... (2.14) 

Thus, by (2.11), (2.13) and (2.14), we have 

E(Z?ni) 
= 

fi?+kn+0(l), 
- (2-15) 

n 

var(^) 
= S (anj-bnj)[\-(an}-bn))\+0{n-^). 

a 2-9 
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Observe that in the expression for E(Z%), it may be checked that ?i^^n 
and An 

~ 
\/n [see (2.18)] while 

n~\ V(Z?ni)^n-1 2 n-^Uj?n+l)ll-ti-i(2kj)n+l)] 

^n-1 2 2kn (4-i) 1?2^ (?4-7 ) j=i \n+\f L n 
\n+\h 

-><r2 = 
S2k(u)[l-2k(u)]du,s,sn-> . ... ?2.16) 
o 

Since the Z^/s are bounded and independent, using the classical central limit 

theorem for triangular arrays, we conclude that 

ra-i/2{Zft-[>2+AJ}/<^ N(0, 1) as ra~->oo. 

This implies, in turn that 
n-1/2{Zni?[>2+An]}/<r-4 iVYO, 1) as r&->oo. Now, 

using (2.8) and the fact that Zni, i = 1, ...,m are i.i.d., we obtain that 

{M-m|>?+AJ}/ V^o"-^ ^(0, 1) as w->oo. D 

From (2.6) note that 

A, 
= 2 dnj[fF-\bnj))-f(F-\anj))] 

~ 
I <m^-m {-/' (>-> (4i) )A (^ (?-J) }+o(1) 

Hence, from (2.16) 

? . ? 
|, 

?* (?) ( -r (*-' (4i ) MMi?i ) ) 1 +Ml) 
AJc-3--n--^-+o(l) 

J 2k(u)[l-2k(u)]du\ 
... (2.17) 

Thus, by Assumption (A) and (2.2) if the density / is sufficiently regular viz., 

strongly unimodal (cf. H?jek and Sid?k 1967, p. 15), the r.h.s. of (2.17) is 

finite and converges to a limit (as n?>oo) under fairly general conditions. 

Finally let i/r(u) 
= 

-{/'(i7"1^))//^"1^))}, 0 < u < 1 be the usual score func 

tion and assume 

Assumption (B). ijr(u) is continuous except possibly for finitely many 
u and is bounded in absolute value by an integrable function. 

Let dnj 
= n~1/2d ( ??y), j 

= 1, ..., w, for some monotone function d(.) 
= 

{d(u)? 0 < u < 1} which may have finitely many jumps. This includes, for 
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example, change-point alternatives of the form dx < d2 
= 

d3 < dA. Then, 

from (2.17), we obtain that as n-?oo 

_ 1 f 1 ?l/2 

n~112 Aw/or -> V2 J d(u)k(u)i/r(u)dul J fc(w)[l-2Jk(w)]dw} ... (2.18) 
0 lo J 

Thus, we have proved the following 

Corollary 2.2 : Under (2.2) and Assumptions (A) and (B), [if?m/?*J]/ 
_ 

d / _ i 
- 

f 
1 

]l/2 
v 

-y/mw a-? N \/2m J d(u)h(u)\?f(u)du? \ J fc(%)[l?2k(u)]du \ , 1 ) as n-+ oo. 
v o v o ; 

Consider the special case of k = 
fc?n (independent of j) where a match 

is defined when j?k < Ry < j+&- Then we have (cf.(1.5)) a^ 
= n~x min 

(w, j+&) and bnj 
= w-1 max(0, j?fe). If fc/w, -> p(0 < p < 1/2), then the 

limiting window function, lim(anj?bnj)?2, corresponds to 

k(u) 
r ?(u>+p)> f?r o < u < ^> 

| p , ^<i^<l-^ ... (2.19) 

L i(l-u+p) l-p< u<l; 

for which cr2 = 
J 2fc(^)[l-2?(^)]?fe 

= 
2p(l?#) (1?2jp). Theorem 2.1 yields o 

the following 

Corollary 2.3. Under the hypothesis of Theorem 2.1, for kn,j 
= 

kn 
= 

[np], 

0 < p < 1/2, {M?m[(2kn+l)+An]}l \Z?mcrp 4> tf(0, 1) cw n->oo. Further, 
_ d _ 1 

if f satisfies Assumption (B), (M?m(2kn+l)]/ \/mn <xv?> N(<\/2m J d(u)k(u) o 
\?r(u)dufcrv, 1) a?? w??oo. 

Remark 2.4. An approximate a-level test is given by : reject i?0 in 

favor of H1 if [{M>?m[/??+AJ}/v/?7mcr] > sa, where za is the 100(1?a)-th 

percentile of a standard normal distribution. 

3. Asymptotic relative efficiencies 

Consider the sequence {Hin} of alternatives in (2.1) with dnj 
= 

1/12 (j-?- J 
/ <\/n(n2? 1) which corresponds to d(u) 

= 
<\/l2(u?1/2) or to 

dy =j/n in (1.2). Then 

W#m}=S S (i-^)^(^l^) 

= m S 
(j- 

^?1 
)[l+ ? 2?{I(X? < 

X?)|fflfl}] 

= 
mn(?f2(x)dx) ^n(n2-l)ll2+o(n~V2). 
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Also (cf. Pirie, 1974, equation (3.13)) wv(W\H0) 
= mw>+l)>--l) Since 

E(W\H0) 
= 0, the "efficacy" of W under {Hin} is 

lim {m2?i2 (?f2(x)dxf ?(?2-l)/12]/[?m2(?+l)2(w-l)/144]} 
n?>x 

= 
\2m(lP(x)dxf. ... (3.1) 

Likewise from (2.18) the efficacy of M under {Hin} is 

(2m){ J d(u) f(u) k(u)du^? j J k(u)[l-2k(u)]du}. 
... (3.2) 

From (3.1) and (3.2) the ARE (cf. H?jek and Sidak 1967, p. 267) is 

e(M, W) = 
[ }d(u) f(u) k(u)du^l \?[ J f2(x)dx)2( ) k(u)[l~2k(u)]du)Y 

- 
2| )(u-H2)}?f(u)k(u)du^?{[ !f2(x)dx)2[ } k(u)[l-2k(u)]du) }. 

... 
(3.3) 

Let the window-function k(u) be given by (2.19). For the normal, logistic, 
double exponential and Cauchy distributions the values of the asymptotic 
relative efficiency, in equation (3.3) are evaluated and given in Table 1 below. 

These calculations show that for all these distributions, e(M, If) exceeds one 

for values of p in the range of (.35,, .40) with higher efficiency nearer 0.4. 

TABLE 1. THE RELATIVE EFFICIENCY e(M, W) OF THE MATCH 
TEST AGAINST PAGE'S TEST 

normal logistic double exponential cauchy 

p 
= 0.30 0.9728 0.7882 0.1400 1.4476 

p = 0.35 1.5519 2.4168 1.0393 2.2125 

p = 0.40 2.3766 7.0052 4.0563 3.7761 

From the above examples, it is clear that the optimal choice of the window 

length kn depends on the underlying density (through i?r(u)) as well as, on the 

alternatives (through d(u)). No such choice may remain optimal for a given 

density, for different alternatives d(u) or vice-versa. This question is being 
further investigated. We may also remark that the heavier the tails of the 

distribution from which the observations come, the smaller the window length 
to achieve this superior performance of the match test. While these are 

asymptotic results, the Monte Carlo results at the end of this section as well 

as other empirical powers we have generated, speak very favorably of the 

match test M. 
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4. Tables, illustration and some monte carlo power computations 

Table 2 provides the critical values of the M statistic ?for values of 

n = 
3(1)9, m = 

1(1)4 for nominal values of a = 0.10, 0.05, 0.01. Since the 

distribution of M is discrete, corresponding to these critical values the exact 

probabilities of exceeding, are given in parentheses. For example, if n ? 6, 

m = 4 using k = 2 and a = 0.01, the critical values of 21 (0.006) and 

20 (0.022) bracket the cc value of 0.01. 

TABLE 2. CRITICAL VALUES AND EXACT PROBABILITIES FOR THE M-STATISTIC 

n ?a .10 
m = 1 

.05 
m = 2 

.01 .10 .05 .01 

3 ife = 1 

4 h = 1 

5 h = 1 

?j = 2 

6 ife = 1 

7 7? = 1 

fc = 2 

jfe = 3 

8 Jb 

k = 2 

fc - 3 

9 fc 

jfc = 2 

fc = 4 

3(.000) 
2(.500) 

4(.000) 
3(.208) 

4(.067) 
3(.200) 

5(.000) 
4(.258) 

4(.068) 

3(.278) 

6(.000) 
o(.101) 

5(.019) 
4(.106) 

6(.034) 
5(.144) 

7(.000) 
6(.134) 

5(.033) 
4(.110) 

6(.053) 

5(.200) 

7(.051) 

6(.215) 

5(.036) 
4(.122) 

6(.082) 

5(.220) 

7(.093) 

6(.288) 

8(.070) 
7(.282) 

3(.000) 
2(.500) 

4(.000) 
3(.208) 

5(.000) 
4(.067) 

5(.000) 

4(.258) 

5(.018) 

4(.068) 

6(.000) 
5(.101) 

5(.019) 
4(.106) 

6(.034) 
5(.144) 

7(.000) 
6(.134) 

5(.033) 
4(.110) 

7(.010) 

6(.053) 

8(.000) 

7(.051) 

5(.036) 

4(.122) 

7(.017) 

6(.082) 

8(.018) 

7(.093) 

9(.000) 
8(.070) 

3(.000) 
2(.500) 

4(.000) 
3(.208) 

5(.000) 
4(.067) 

?(.000) 

4(.258) 

6(.000) 
5(.018) 

6(.000) 
5(.101) 

6(.004) 
5(.019) 

7(.000) 
6(.034) 

7(.000) 
6(.134) 

6(.005) 
5(.033) 

7(.010) 

6(.053) 

8(.000) 
7(.051) 

6(.009) 
5(.036) 

8(.003) 
7(.017) 

9(.000) 
8(.018) 

9(.000) 
8(.070) 

6(.000) 
5(.250) 

5(.043) 
6(.148) 

7(.089) 
6(.218) 

9(.067) 
8(.256) 

8(.042) 

7(.122) 

10(.056) 
9(.181) 

8(.059) 
7(.144) 

11(.039) 
10(.116) 

12(.098) 
11(.279) 

8(.071) 
7(.159) 

11(.070) 
10(.163) 

13(.077) 
12(.203) 

8(.081) 
7(.171) 

11(.096) 
10(.199) 

14(.054) 

13(.140) 

16(.034) 
15(.125) 

6(.000) 
5(.250) 

7(.043) 
6(.148) 

8(.022) 
7(.089) 

10(.000) 
9(.067) 

8(.042) 
7(.122) 

11(.010) 
10(.056) 

9(.020) 
8(.059) 

11(.039) 
10(.116) 

13(.018) 
12(.098) 

9(.027) 
8(.071) 

12(.023) 
11(.070) 

14(.019) 
13(.077) 

9(.032) 
8(.081) 

12(.038) 
11(.096) 

15(.016) 
14(.054) 

16(.034) 
15(.125) 

6(.000) 
5(.250) 

8(.000) 
7(.043) 

9(.004) 
8(.022) 

10(.000) 
9(.067) 

10(.002) 
9(.012) 

12(.000) 
11(.010) 

10(.00?) 

9(.020) 

12(.009) 
11(.039) 

14(.000) 
13(.018) 

10(.008) 
9(.027) 

13(.006) 
12(.023) 

16(.000) 
15(.003) 

11(.003) 
10(.011) 

14(.003) 
13(.013) 

16(.003) 
15(.016) 

17(.005) 
16(.034) 
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m = 3 

n /?-> MO .05 .01 

3 k = 1 9(.000) 9(.000) 9(.000) 
8(.125) 8(.125) 8(.125) 

4 k=l 10(.042) 10(.042) 11(.009) 
9(.135) 9(.135) 10(.042) 

5 A? = X 10(.097) 11(.046) 13(.002) 
9(.206) 10(.097) 12(.011) 

k = 2 13(.091) 14(.017) 15(.000) 
12(.255) 13(.091) 14(.017) 

6 A? = 1 11(.061) 12(.023) 13(.008) 
10(.134) 11(.061) 12(.023) 

* = 2 15(.035) 15(.03?) 16(.008) 
14(.103) 14(.103) 15(.035) 

7 k = 1 11(.081) 12(.035) 14(.004) 
10(.160) 11(.081) 13(.013) 

fc = 2 15(.088) 16(.035) 18(.003) 
14(.183) 15(.085) 17(.011) 

k = 3 18(.073) 19(.018) 20(.002) 
17(.191) 18(.073) 19(.018) 

8 A? = 1 11(.096) 12(.045) 14(.007) 
10(.179) 11(.096) 13(.019) 

k = 2 16(.066) 17(.027) 18(.010) 
15(.135) 26(.066) 17(.027) 

k = 3 19(.083) 20(.030) 21(.008) 
18(.182) 19(.082) 20(.030) 

9 fc = 1 12(.054) 13(.024) 14(.010) 
11(.107) 12(.054) 13(.024) 

k = 2 26(.094) 17(.045) 19(.007) 
15(.174) 16(.094) 18(.019) 

k = 3 20(.076) 21(.031) 23(.003) 
19(.155) 20(.076) 22(.010) 

k = 4 23(.059) 24(.018) 25(.003) 
22(. 49) 23(.059) 24(.018) 

AND M. EBNESHAHRASHOOB 

m = 4 

.10 .05 .01 

11(.063) 12(.000) 12(.000) 
10(.229) 11(.063) 11(.063) 

13(.042) 13(.042) 15(.002) 
12(.113) 12(.113) 14(.011) 

13(.098) 14(.043) 16(.005) 

12(.191) 13(.098) 15(.016) 

18(.030) 18(.030) 19(.004) 

17(.104) 17(.104) 18(.030) 

14(.071) 15(.032) 17(.004) 
13(.138) 14(.071) 16(.013) 

19(.061) 20(.022) 21(.006) 
18(.139) 19(.061) 20(.022) 

14(.093) 15(.047) 17(.009) 

13(.167) 14(.093) 16(.022) 

20(.066) 21(.029) 23(.003) 

19(.133) 20(.066) 22(.010) 

24(.054) 25(.016) 26(.003) 

23(.135) 24(.054) 25(.016) 

15(.059) 16(.029) 18(.005) 

14(.110) 15(.059) 17(.013) 

21(.059) 22(.027) 24(.004) 
20(.112) 21(.059) 23(.011) 

25(.081) 26(.034) 28(.003) 
24(.162) 25(.081) 27(.012) 

15(.069) 16(.036) 18(.007) 
14(.124) 15(.069) 17(.017) 

21(.088) 22(.046) 24(.010) 
20(.151) 21(.088) 23(.022) 

26(.087) 27(.042) 29(.007) 
25(.160) 26(.087) 28(.018) 

30(.067) 31(.030) 32(.009) 
29(.161) 30(.076) 31(.030) 
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Table 3 gives Monte Carlo powers of M and W for ^=8 and m=2 

for normal data based on 1,000 replications for each value of power. We 

consider three different alternatives, Hr : dj=0.l+j(0.1)r, j=0,...l ; 

r= 1,2,3. The table shows that the power of M is considerably better than 

If and that it increases with p. 

TABLE 3. MONOTE CARLO POWER COMPARISONS OF M AND PAGE'S If-TEST 

STATISTICS FOR n = 8 AND m= 2 ( a = 0.05 ) 

M test 
alternatives p 

= 
1/8 1/4 1/3 W test 

Hx 0.333 0.382 0.448 0.227 

H2 0.524 0.627 0.738 0.505 

H3 0.749 0.839 0.906 0.788 
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